Quasimöbius maps preserve uniform domains

نویسنده

  • Xiangdong Xie
چکیده

We show that if a domain Ω in a geodesic metric space is quasimöbius to a uniform domain in some metric space, then Ω is also uniform. Mathematics Subject Classification (2000). 30C65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic and Uniform Domains in Banach Spaces

A domain G in a Banach space is said to be δ-hyperbolic if it is a Gromov δ-hyperbolic space in the quasihyperbolic metric. Then G has the Gromov boundary ∂∗G and the norm boundary ∂G. We show that the following properties are quantitatively equivalent: (1) G is C-uniform. (2) G is δ-hyperbolic and there is a natural bijective map G ∪ ∂∗G → G ∪ ∂G, which is η-quasimöbius rel ∂∗G. (3) G is δ-hyp...

متن کامل

Metric Space Inversions, Quasihyperbolic Distance, and Uniform Spaces

We define a notion of inversion valid in the general metric space setting. We establish several basic facts concerning inversions; e.g., they are quasimöbius homeomorphisms and quasihyperbolically bilipschitz. In a certain sense, inversion is dual to sphericalization. We demonstrate that both inversion and sphericalization preserve local quasiconvexity and annular quasiconvexity as well as unif...

متن کامل

Locally Uniform Domains and Quasiconformal Mappings

We document various properties of the classes of locally uniform and weakly linearly locally connected domains. We describe the boundary behavior for quasiconformal ho-meomorphisms of these domains and exhibit certain metric conditions satissed by such maps. We characterize the quasiconformal homeomorphisms from locally uniform domains onto uniform domains. We furnish conditions which ensure th...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Strongly Uniform Domains and Periodic Quasiconformal Maps

An m-uniform domain in R n is, roughly, a domain such that any two maps from the i-sphere, 0 i m < n, into the domain can be homotoped to each other without going too far or too close to the boundary, when seen from the perspective of the images of the two maps. We establish several equivalent deenitions for m-uniform domains. We apply the theory by investigating the structure of the complement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006